77 research outputs found

    Longitudinal performance analysis of machine learning based Android malware detectors

    Get PDF
    This paper presents a longitudinal study of the performance of machine learning classifiers for Android malware detection. The study is undertaken using features extracted from Android applications first seen between 2012 and 2016. The aim is to investigate the extent of performance decay over time for various machine learning classifiers trained with static features extracted from date-labelled benign and malware application sets. Using date-labelled apps allows for true mimicking of zero-day testing, thus providing a more realistic view of performance than the conventional methods of evaluation that do not take date of appearance into account. In this study, all the investigated machine learning classifiers showed progressive diminishing performance when tested on sets of samples from a later time period. Overall, it was found that false positive rate (misclassifying benign samples as malicious) increased more substantially compared to the fall in True Positive rate (correct classification of malicious apps) when older models were tested on newer app samples

    High Accuracy Detection of Mobile Malware Using Machine Learning

    Get PDF
    open access articleAs smartphones and other mobile and IoT devices have become pervasive in everyday life, malicious software (malware) authors are increasingly targeting the operating systems that are at the core of these mobile systems. Malware targeting mobile platforms has witnessed an explosive growth in the last decade. As a result of this rapid increase in mobile malware, the limits of traditional signature-based antivirus scanning have been stretched. This has led to the emergence of machine learning-based detection as a complementary solution to traditional antivirus scanning. Although machine learning-based malware detection has continued to attract great research interest, many challenges remain as emerging malware families continue to evolve with more sophisticated capabilities and stealthy evasive techniques. This Special Issue in Electronics presents some of the most recent research results and innovative machine learning-based approaches to detecting malicious software and attacks that can compromise mobile platforms

    High Accuracy Phishing Detection Based on Convolutional Neural Networks

    Get PDF
    The persistent growth in phishing and the rising volume of phishing websites has led to individuals and organizations worldwide becoming increasingly exposed to various cyber-attacks. Consequently, more effective phishing detection is required for improved cyber defence. Hence, in this paper we present a deep learning-based approach to enable high accuracy detection of phishing sites. The proposed approach utilizes convolutional neural networks (CNN) for high accuracy classification to distinguish genuine sites from phishing sites. We evaluate the models using a dataset obtained from 6,157 genuine and 4,898 phishing websites. Based on the results of extensive experiments, our CNN based models proved to be highly effective in detecting unknown phishing sites. Furthermore, the CNN based approach performed better than traditional machine learning classifiers evaluated on the same dataset, reaching 98.2% phishing detection rate with an F1-score of 0.976. The method presented in this pa-per compares favourably to the state-of-the art in deep learning based phishing website detection

    Quality of service optimization of multimedia traffic in mobile networks

    Get PDF
    Mobile communication systems have continued to evolve beyond the currently deployed Third Generation (3G) systems with the main goal of providing higher capacity. Systems beyond 3G are expected to cater for a wide variety of services such as speech, data, image transmission, video, as well as multimedia services consisting of a combination of these. With the air interface being the bottleneck in mobile networks, recent enhancing technologies such as the High Speed Downlink Packet Access (HSDPA), incorporate major changes to the radio access segment of 3G Universal Mobile Telecommunications System (UMTS). HSDPA introduces new features such as fast link adaptation mechanisms, fast packet scheduling, and physical layer retransmissions in the base stations, necessitating buffering of data at the air interface which presents a bottleneck to end-to-end communication. Hence, in order to provide end-to-end Quality of Service (QoS) guarantees to multimedia services in wireless networks such as HSDPA, efficient buffer management schemes are required at the air interface. The main objective of this thesis is to propose and evaluate solutions that will address the QoS optimization of multimedia traffic at the radio link interface of HSDPA systems. In the thesis, a novel queuing system known as the Time-Space Priority (TSP) scheme is proposed for multimedia traffic QoS control. TSP provides customized preferential treatment to the constituent flows in the multimedia traffic to suit their diverse QoS requirements. With TSP queuing, the real-time component of the multimedia traffic, being delay sensitive and loss tolerant, is given transmission priority; while the non-real-time component, being loss sensitive and delay tolerant, enjoys space priority. Hence, based on the TSP queuing paradigm, new buffer managementalgorithms are designed for joint QoS control of the diverse components in a multimedia session of the same HSDPA user. In the thesis, a TSP based buffer management algorithm known as the Enhanced Time Space Priority (E-TSP) is proposed for HSDPA. E-TSP incorporates flow control mechanisms to mitigate congestion in the air interface buffer of a user with multimedia session comprising real-time and non-real-time flows. Thus, E-TSP is designed to provide efficient network and radio resource utilization to improve end-to-end multimedia traffic performance. In order to allow real-time optimization of the QoS control between the real-time and non-real-time flows of the HSDPA multimedia session, another TSP based buffer management algorithm known as the Dynamic Time Space Priority (D-TSP) is proposed. D-TSP incorporates dynamic priority switching between the real-time and non-real-time flows. D-TSP is designed to allow optimum QoS trade-off between the flows whilst still guaranteeing the stringent real-time component’s QoS requirements. The thesis presents results of extensive performance studies undertaken via analytical modelling and dynamic network-level HSDPA simulations demonstrating the effectiveness of the proposed TSP queuing system and the TSP based buffer management schemes

    DL-Droid: Deep learning based android malware detection using real devices

    Get PDF
    open access articleThe Android operating system has been the most popular for smartphones and tablets since 2012. This popularity has led to a rapid raise of Android malware in recent years. The sophistication of Android malware obfuscation and detection avoidance methods have significantly improved, making many traditional malware detection methods obsolete. In this paper, we propose DL-Droid, a deep learning system to detect malicious Android applications through dynamic analysis using stateful input generation. Experiments performed with over 30,000 applications (benign and malware) on real devices are presented. Furthermore, experiments were also conducted to compare the detection performance and code coverage of the stateful input generation method with the commonly used stateless approach using the deep learning system. Our study reveals that DL-Droid can achieve up to 97.8% detection rate (with dynamic features only) and 99.6% detection rate (with dynamic + static features) respectively which outperforms traditional machine learning techniques. Furthermore, the results highlight the significance of enhanced input generation for dynamic analysis as DL-Droid with the state-based input generation is shown to outperform the existing state-of-the-art approaches

    DroidFusion: A Novel Multilevel Classifier Fusion Approach for Android Malware Detection

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI linkAndroid malware has continued to grow in volume and complexity posing significant threats to the security of mobile devices and the services they enable. This has prompted increasing interest in employing machine learning to improve Android malware detection. In this paper, we present a novel classifier fusion approach based on a multilevel architecture that enables effective combination of machine learning algorithms for improved accuracy. The framework (called DroidFusion), generates a model by training base classifiers at a lower level and then applies a set of ranking-based algorithms on their predictive accuracies at the higher level in order to derive a final classifier. The induced multilevel DroidFusion model can then be utilized as an improved accuracy predictor for Android malware detection. We present experimental results on four separate datasets to demonstrate the effectiveness of our proposed approach. Furthermore, we demonstrate that the DroidFusion method can also effectively enable the fusion of ensemble learning algorithms for improved accuracy. Finally, we show that the prediction accuracy of DroidFusion, despite only utilizing a computational approach in the higher level, can outperform stacked generalization, a well-known classifier fusion method that employs a meta-classifier approach in its higher level

    Mobile Botnet Detection: A Deep Learning Approach Using Convolutional Neural Networks

    Get PDF
    Android, being the most widespread mobile operating systems is increasingly becoming a target for malware. Malicious apps designed to turn mobile devices into bots that may form part of a larger botnet have become quite common, thus posing a serious threat. This calls for more effective methods to detect botnets on the Android platform. Hence, in this paper, we present a deep learning approach for Android botnet detection based on Convolutional Neural Networks (CNN). Our proposed botnet detection system is implemented as a CNN-based model that is trained on 342 static app features to distinguish between botnet apps and normal apps. The trained botnet detection model was evaluated on a set of 6,802 real applications containing 1,929 botnets from the publicly available ISCX botnet dataset. The results show that our CNN-based approach had the highest overall prediction accuracy compared to other popular machine learning classifiers. Furthermore, the performance results observed from our model were better than those reported in previous studies on machine learning based Android botnet detection

    Examining the behaviours of recent malware exploiting the COVID19 pandemic

    Get PDF
    The current COVID-19 climate has led to an increase in social engineering-based malware infections worldwide, as malicious actors exploit people’s anxieties and changes in working patterns brought about by the pandemic. Cybercriminals have been using COVID19-themed emails and fraudulent websites to entice Internet users into downloading malware so as to gain a foothold on their systems or networks. These types of malware attacks are set to continue as the pandemic is far from over, with many parts of the world experiencing resurgence of the COVID-19 virus after the easing of lockdown measures. Hence, this talk will focus on recent malware that have been designed to exploit the pandemic to inflict damage to individuals and organizations. The infection methods used by such malware will be discussed, and their various techniques, behaviour and impact will be analyzed. This will not only raise our collective awareness about the COVID-19 related malware but will also provide some technical insight that will enhance preventive and defensive efforts to curb the spread of such malware
    • …
    corecore